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ABSTRACT 

Anthropogenic climate change compromises reef growth due to increasing temperatures 

and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, 

suggesting species composition will influence how reef communities respond to future climate 

change. However, most studies that model future reef growth rely on uniform scleractinian 

calcification sensitivities to temperature and ocean acidification because data are lacking for 

many species. In order to address this knowledge gap, calcification of twelve common and 

understudied Caribbean coral species was measured for two months under crossed temperatures 

(27°C, 30.3°C) and CO2 partial pressures (pCO2) (400, 900, 1300 µatm). Mixed effects models 

of calcification for each species were then used to project community-level scleractinian 

calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model 

data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and 

Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. 

In the business-as-usual CO2 emissions scenario, reefs with high abundances of these species had 

projected end-of-century declines in scleractinian calcification of >50% relative to present-day 

rates. Siderastrea siderea, the other most-common species, was insensitive to both temperature 

and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end-

of-century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification 

rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions 

scenario, projected declines were highly variable among reefs, ranging 10 to 100%. Without 

considering bleaching, reef growth will likely decline on most reefs, especially where resistant 

species like S. siderea are not already dominant. This study demonstrates how species 

composition influences reef community responses to climate change and how reduced CO2 

emissions can limit future declines in reef calcification.  
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INTRODUCTION 

Coral reefs are diverse ecosystems that vary in their coral species composition. This in 

turn shapes the underlying habitat and the species they support (Cheal et al., 2008, Hixon &  

Beets, 1993). As a result of the 2 Tt of anthropogenic CO2 emissions since the start of the 

Industrial Revolution (Le Quere et al., 2015), oceans are experiencing unprecedented rates of pH 

decline (“ocean acidification”) (Hönisch et al., 2012) and increased temperatures (Domingues et 

al., 2008). These changes deleteriously influence coral growth and cover through unfavorable 

chemistry and a disruption of the algal-coral symbiosis (“bleaching”) (Hoegh-Guldberg et al., 

2007). Declining coral cover and calcification (Perry et al., 2013) reduce the architectural 

complexity of reefs (Alvarez-Filip et al., 2009) and cause cascading negative effects on habitat, 

diversity, and biomass (Paddack et al., 2009, Rogers et al., 2014, Wilson et al., 2006). 

Most studies conclude reef growth will slow significantly by the end of the century (Chan 

&  Connolly, 2013, Hoeke et al., 2011, Kleypas et al., 1999, Kleypas &  Yates, 2009, Langdon et 

al., 2000) or even cease by mid-century (Silverman et al., 2009). Assumed uniform coral 

responses to increased temperature and partial pressure of CO2 (pCO2) are often used in these 

modeling exercises (Buddemeier et al., 2008, Evenhuis et al., 2015, Silverman et al., 2009) 

because data on species-level responses are limited. In general, calcification has been measured 

as a Gaussian function of temperature (Jokiel &  Coles, 1977, Marshall &  Clode, 2004) at the 

organismal level, and a linear function of temperature across latitude (Lough &  Barnes, 2000). 

Bleaching often sets the upper thermal limit to calcification by depriving corals of photosynthate, 

a key energy source. Bleaching thresholds are usually within 1-2ºC of summertime means (Coles 

et al., 1976, Jokiel &  Coles, 1977). With respect to pCO2, calcification is often fit as a linear or 

power law function k(Ωarag - 1)n of aragonite saturation state (Ωarag), a carbonate chemistry 
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parameter inversely proportional to pCO2. However, compilations and meta-analyses have 

shown the slope of the calcification- Ωarag relationship varies across published literature (Chan &  

Connolly, 2013, Kleypas &  Langdon, 2006, Langdon &  Atkinson, 2005). These differences can 

be attributed to both species and the experimental methods though species-specific responses 

have been measured within the same study where methods and conditions were consistent 

(Comeau et al., 2013). Variation in Ωarag sensitivity among species and the ability of corals to 

regulate the chemistry within the calcifying space (McConnaughey, 2003) indicate species 

composition will determine how reefs respond to climate change. Predictions based on uniform 

constants therefore may not reflect future CaCO3 precipitation of individual reefs.  

Underscoring how reefs may vary in their responses to climate change, recent studies of 

reefs under elevated pCO2 have documented stable states ranging from reduced growth 

(Fabricius et al., 2011, Manzello, 2010) to tolerance (Shamberger et al., 2014, Shamberger et al., 

2011) to phase shifts to macroalgae-dominated systems (Enochs et al., 2015). Furthermore, 

temperature often exerts a larger measurable influence on growth than Ωarag (Carricart-Ganivet et 

al., 2012, Helmle et al., 2011, Venti et al., 2014). This pattern is not surprising when the relative 

sensitivities of coral growth to temperature and Ωarag are compared to the annual variation of 

each parameter. In the Florida Keys, mean monthly temperature and Ωarag range from 23 to 30°C 

and 3.1 to 4.6 units, respectively (Fig. S1) (Kuffner et al., 2015, Sutton et al., 2014). Beyond this 

7°C temperature range coral growth slows and eventually ends with mortality (Jaap, 1984, 

Vaughan, 1916, Vaughan &  Wells, 1943).In contrast, the 1.5 unit Ωarag range would only affect 

calcification by 23% (assuming a uniform 15% Ω -1arag  sensitivity from Chan and  Connolly 

(2013)). Future increases in temperature could increase net annual calcification over certain 

timescales depending on corals’ thermal optima (Jokiel &  Coles, 1977).  However, sustained 
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elevated temperatures can acutely stress corals and eventually induce bleaching and mortality. 

Conversely, decreased Ωarag will chronically depress calcification year-round. These different 

timescales and effect sizes highlight the need for studies testing coral responses to both increased 

temperature and pCO2. 

The first goal of this experiment was to assay calcification of twelve common Caribbean 

species under elevated temperature crossed with elevated pCO2 in the same experimental 

conditions (seasonality, duration, feeding, light, etc.). The control temperature of 27°C was 

chosen as representing the thermal optimum for these species in this region (Carricart-Ganivet et 

al., 2012, Kennedy et al., 2013) and is near the present-day mean annual temperature in the 

Florida Keys, where these species were collected. The elevated treatment temperature was set at 

30.3°C, near the 30.5°C bleaching threshold for the Florida Keys based on NOAA’s 

climatological bleaching model (Manzello et al., 2007). The study species were Acropora 

cervicornis, Agaricia agaricites, Dichocoenia stokesii, Montastraea cavernosa, Orbicella 

faveolata, Porites astreoides, Porites divaricata, Pseudodiploria clivosa, Pseudodiploria 

strigosa, Siderastrea siderea, Siderastrea radians, and Solenastrea hyades. These species were 

chosen because of their current or historic abundance and/or because data are sparse on their 

growth responses to increased temperature and pCO2. The second goal was to test whether reef-

building species composition is important in determining potential changes in overall reef 

calcification. Empirical growth responses were coupled with benthic cover and climate model 

data to project end-of-century scleractinian community calcification at 43 reefs in the Florida 

Keys. Only two temperatures were tested to allow for a wider range in pCO2 levels, and therefore 

intra-annual sinusoidal temperature variation was not examined. Rather, the study focuses on 
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calcification responses to shifts in mean annual temperatures, which are expected to increase 

steadily this century (IPCC, 2014).  

MATERIALS AND METHODS 

Experimental corals 
Coral colonies were collected from sites in the Florida Keys (Table S1) in the summer of 

2011 and brought to the University of Miami’s Climate Change facility. Branching colonies were 

trimmed to approximately 5 cm long fragments. Non-branching colonies were cored into flat, 

circular 2.5 cm diameter fragments.  Coral fragments (hereafter referred to as corals) were glued 

to labeled ceramic plugs (Boston Aqua Farms) and allowed to recover at 27°C and ambient pCO2 

for at least one month before the experiment. Corals showed polyp extension as well as tissue 

growth over cut scars. Total number of corals per species ranged from 20 to 152 (Table S1). 

Coral surface areas were measured with ImageJ software (Abràmoff et al., 2004) using planar 

surface for mounding corals and cylindrical approximations for P. divaricata. The surface area 

of A. cervicornis was measured using 3D imaging at NOAA AOML’s Ocean Chemistry and 

Ecosystems Division (Enochs et al., 2014).  

Experimental system 
Experiments were conducted at the University of Miami Corals and Climate Change 

Laboratory from October to December 2011. Three pCO2 treatments of 400, 900, and 1300 µatm 

were crossed with two temperatures of 27 and 30.3°C. Mass flow controllers (Sierra Instruments 

Model 810C) mixed pure CO2 with ambient air to achieve the treatment pCO2 levels. A pCO2 

equilibrator coupled to a LICOR LI-820 gas analyzer was rotated across tanks to monitor tank 

pCO2 levels. Temperatures were maintained by Omega Engineering temperature controllers 

(Model CN7833) coupled with 1.5 kW heating elements and cooling coils.  
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Each tank consisted of a 60 L holding tank coupled to its own 200 L sump tank for a total 

volume of 260 L. Venturi injectors bubbled the sump tanks with the gas mixtures. In each tank, 

seawater was pumped from the sump to the holding tank where it gravity-fed back into the sump. 

Tanks were supplied with a steady 30 mL min-1 input of 10 µm-filtered seawater from Bear Cut, 

Virginia Key. Bulk seawater exchanges associated with coral feeding and tank cleaning were 

>120 L week-1. Nutrients were not monitored in this study, but source water dissolved inorganic 

nitrogen is <1 μM and phosphate is 0.1 μM (Devlin, 2015). HOBO U30 data loggers (Onset 

Computer) recorded temperatures in each tank every five minutes along with light from a 

centrally-located photosynthetically active radiation (PAR) sensor. Light levels were adjusted 

with window screen such that average peak sunlight was 327 ± 14 µmol quanta m-2 s-1 (mean ± 

standard error, n=66) and total light exposure was 3.7 ± 0.2 mol quanta m-2 d-1 (n=66).  

 Water samples were collected weekly from each tank to document chemical conditions. 

Total alkalinity (TA) was measured in duplicate on an automated Gran titrator and dissolved 

inorganic carbon (DIC) in duplicate using a coulometer (UIC, Inc). Tris synthetic seawater 

buffer (Nemzer &  Dickson, 2005) was used to calibrate the titrator pH sensor (Orion) on the 

total scale (pHt). Salinity (S) was measured on a Guildeline 8410A Salinometer. Total alkalinity 

and DIC were used to characterize carbonate parameters using the seacarb package v3.0.11 

(Gattuso et al., 2015) in R v3.2.4 revised (R Core Team, 2016), using dissociation constants 

from Lueker et al. (2000), Perez and  Fraga (1987), and Dickson (1990).  

Procedure  
The six treatments were each randomly distributed across twelve experimental tanks (two 

replicate tanks per treatment). Corals were then distributed among treatments using a stratified 

randomization based on parent colony. Treatments were ramped up from 27°C and ambient 400 



Growth responses of Caribbean coral species 

8 
 

µatm pCO2 (control treatment) to target levels at rate of ~0.3ºC d-1 and 100-200 µatm pCO2 d-1. 

The buoyant weights of corals were recorded every two weeks with Sargent Welch SWT-403 

and Mettler PB303-S balances (readability 1 mg). Growth rates, relative to surface area, were 

calculated as dry weight gain (Davies, 1989) between the last recorded weighing and the first 

weighing after the treatment ramping period, nominally six weeks. Corals were fed twice weekly 

a diet of live rotifers (~10 rotifers L-1) and larval feed (AP brand) composed of ~6 mg L-1 each of 

<100 µm particles and 250-450 µm particles. Aquarium pumps with diffusers kept food 

suspended in the feeding bins. Corals were fed starting late afternoon to early night (~ 4 h), after 

which the feeding water was discarded and bulk seawater replenishment was approximately 60 

L.   

Every two weeks, the treatments were randomly reassigned to tanks to account for any 

potential tank effects. The tank shuffling occurred while corals were isolated during feeding, 

with water changes of ~100 L and tank sumps rapidly equilibrating to new treatments during the 

four-hour feeding period. After feeding, corals were returned to the newly-assigned tanks 

containing their treatment. Twice during the experiment, corals were randomly reassigned 

within-treatments/between-tanks to account for potential cohort effects. In other words, 

treatments did not covary with tanks or cohorts. 

Growth analyses and projections 
Calcification rates (Gij) for coral i in colony j were fit by restricted maximum likelihood 

to linear mixed effects models for each species with temperature (T) and Ωarag (A) as fixed 

effects (βT and βA, respectively), random intercepts by colony (µ0j), and a cohort grouping 

random effect (µ0g): 
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"#$ = 	'( + '*+#$ +	',A./ + 0($ + 0(1 + 2#$  (1) 

µ(/ σ;: 0
where 3 5	~		7 8µ ;= and residual εij ~ N(0, λ2). The cohort grouping is the unique (4 0 σ;

combination of tank assignments for each coral. It combines cohort, time, and tank to account for 

the periodic random shuffling of corals and tanks within treatments. Temperature and Ωarag were 

treated as additive linear effects because 1) temperature was limited to two treatments, 2) 

previous studies indicate linear relationships between calcification and Ωarag (Chan &  Connolly, 

2013, Langdon &  Atkinson, 2005, Langdon et al., 2000), and 3) observed interactions between 

temperature and Ωarag were limited or insignificant (Langdon &  Atkinson, 2005). If calcification 

did not appear to vary as a linear function of Ωarag, then calcification rates were fit to a 

generalized additive mixed model with Gaussian error distribution and identity link function, 

replacing the βAAij term with a smoothing function of Ωarag based on cubic regression splines. 

Model fits were evaluated from visual inspection of residuals (Fig. S3). The significance of 

linear mixed model fixed effects was evaluated from profile likelihood 95% confidence intervals. 

Significance of general additive mixed model terms was evaluated from p-values based on Wald 

tests. Equation (1) was compared against models with a temperature-Ωarag fixed effect interaction 

term or colony-location random intercept (Supporting Information). To test for tank effects, 

longitudinal versions of Equation (1) with and without tanks as random intercepts (Supporting 

Information) were evaluated with likelihood ratio tests. Models were fit using the lme4 v1.1-11 

(Bates et al., 2011) and gamm4 v0.2-3 (Wood &  Scheipl, 2014) packages in the software 

program R v3.2.4 revised (R Core Team, 2016).  

Growth rates for Florida Keys reefs were projected to 2100 based on 1) the mixed effects 

models from this experiment, 2) Florida Keys reef composition data from the Coral Reef 
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Evaluation and Monitoring Project (CREMP) (CREMP, 2013, Ruzicka et al., 2013), and 3) 

temperature and Ωarag inputs from regridded Intergovernmental Panel on Climate Change (IPCC) 

AR5 climate model data (van Hooidonk et al., 2014). Projections for each Representative 

Concentration Pathway (RCP) scenario (van Vuuren et al., 2011) were based on the temperature 

and Ωarag data from the 1° x 1° cell located at the center of the Florida Keys. The most recent 

CREMP estimates of coral cover from 2013 were averaged across stations within each reef. Six 

out of 49 reefs were omitted because none of the study species were present, leaving 43 reefs for 

projections. Reefs were categorized as patch, offshore shallow (3-6 m) and offshore deep (10-20 

m) reefs. The CREMP data combined benthic cover for certain groupings of corals: Agaricia 

agaricites/Undaria agaricites complex, Orbicella annularis complex, and Porites porites 

complex. Growth for these complexes was estimated by this experiment’s mixed effect models 

for A. agaricites, O. faveolata, and P. divaricata, respectively. The coral calcification projections 

only apply to the portion of reefs covered by the study species, which was generally over three-

quarters of the total scleractinian cover (Table S4). To facilitate intercomparisons across sites, 

calcification rates were scaled to the first year in the climate dataset (2006). Standard uncertainty 

of prediction was calculated by summing in quadrature the standard uncertainty in model 

coefficients and standard uncertainty due to colonies. 

RESULTS 

Experimental conditions 
Experimental tank conditions (Table 1) exhibited slight diurnal patterns in temperature 

and pCO2. Temperatures increased approximately 0.2°C from morning to the mid-afternoon peak 

as ambient heat energy outpaced the tank cooling mechanism while pCO2 concentrations 

decreased by approximately 50-200 µatm from morning to mid-afternoon due to photosynthesis. 
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Diurnal variations in temperature and pCO2 based on Cheeca Rocks MAPCO2 data are 

approximately 0.4-1°C and 20-80 µatm for comparison (Fig. S2). One tank from the high 

temperature, high pCO2 treatment experienced a system failure towards the end of the 

experiment, and therefore, the penultimate weighing was used to calculate calcification for its 

corals. Tank chemistry was stable despite biological activity from coral fragments and physical 

processes like evaporation because of the seawater replenishment from steady feeds and periodic 

bulk exchanges. 

Table 1. Treatment conditions. Mean temperatures are from the monitoring system (n = 12 
h-1). Chemistry measurements (mean ± SD, n = 12-14) are from weekly discrete water 
samples for each treatment, inclusive of two replicate tanks. Three water samples are 
missing at random. 

Treat
ment 

T 
(°C) 

pCO2 
(µatm) pHt 

TA (µmol 
kg-1 SW) 

DIC (µmol 
kg-1 SW) Ωarag S 

1 27.0 
± 0.1 400 ± 60 8.06 ± 0.05 2377 ± 41 2057 ± 43 3.8 ± 0.3 33 ± 1 

2 27.1 
± 0.1 899 ± 211 7.78 ± 0.10 2422 ± 47 2246 ± 41 2.3 ± 0.5 33 ± 1 

3 27.0 
± 0.1 1343 ± 207 7.62 ± 0.06 2442 ± 33 2336 ± 33 1.7 ± 0.2 33 ± 1 

4 30.4 
± 0.5 399 ± 49 8.06 ± 0.04 2406 ± 47 2052 ± 38 4.3 ± 0.4 33 ± 1 

5 30.4 
± 0.5 946 ± 196 7.77 ± 0.09 2460 ± 52 2268 ± 54 2.5 ± 0.5 33 ± 1 

6 30.3 
± 0.5 1292 ± 247 7.64 ± 0.08 2447 ± 77 2311 ± 77 2.0 ± 0.4 33 ± 1 

Calcification  
Calcification rates ranging from 0 to 2 mg CaCO3 cm-2 d-1 (Fig. 1). The highest growth 

rates in control conditions were 1.0-1.5 mg CaCO3 cm-2 d-1 for A. agaricites, O. faveolata, and S. 

siderea. Calcification responses to elevated temperature and pCO2 varied by species. Orbicella 

faveolata was evaluated with a general additive mixed effects model (Table S3, Fig. S4) because 

mean calcification was near zero in the elevated temperature, mid-pCO2 treatment. Acropora 

cervicornis experienced early mortality, with no growth measurements in the high temperature, 
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highest pCO2 treatment. Significant negative responses to temperature were observed for D. 

stokesii, M. cavernosa, O. faveolata, P. astreoides, and P. clivosa, ranging from -0.18 ± 0.09 to -

0.05 ± 0.01 mg CaCO  cm-23  d-1 °C-1 (βT ± standard error, SE) (Fig. 2, Table S2). However, when 

two influential data points were excluded from P. clivosa, βT changed to a statistically 

insignificant -0.08 ± 0.07 mg CaCO  cm-2 d-13  °C-1. Two species, S. radians and S. hyades, 

exhibited positive βT responses to elevated temperature of 0.03 ± 0.01 and 0.07 ± 0.01 mg 

CaCO3 cm-2 d-1 °C-1, respectively. Calcification was proportional to Ωarag for A. agaricites, M. 

cavernosa, P. astreoides, S. radians, and S. hyades, with growth responses ranging 0.04 ± 0.02 to 

0.19 ± 0.08 mg CaCO3 cm-2 d-1 Ω -1arag  (βA ± SE). Coral colonies accounted for 20-70% of 

random effects variance, while cohort grouping accounted for 0-30%. Acropora cervicornis was 

the exception to this pattern, with cohort grouping accounting for almost all of the random 

effects variance. This is expected given corals came from mostly unique colonies. The 

temperature-Ωarag interaction and colony-location random intercept terms did not improve model 

fits (Supplemental Information). No tank effect was observed based on likelihood ratio tests of 

the nested longitudinal models (Χ2df=1 < 0.1, p ~ 1 for all species). 
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Fig. 1. Coral growth rates (mean ± 95% confidence interval) across control (solid blue) and 
elevated temperature (open red) treatments.  
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Fig. 2. Fixed effects linear coefficients for (a) temperature and (b) Ωarag with 95% 
confidence intervals from likelihood profiles. Closed symbols indicate coefficients with 
confidence intervals that do not overlap zero.  Model data are summarized in Table S2. 

Growth projections  
The IPCC AR5 ensemble climate models predict end-of-century temperature increases in 

the Florida Keys from present-day 26.7°C to 27.1°C under the optimistic RCP 2.6 and 29.6°C 

under business-as-usual RCP 8.5 (Fig. S5). The annual range in temperature is 6°C. Mean annual 

Ωarag decreases from present-day 4.0 to 3.9 units (RCP 2.6) and 2.7 units (RCP 8.5) over the 

same time period. The annual range in Ωarag is 0.1-0.2 units. Standard deviations in temperature 

and Ωarag among climate models are 0.3-0.7°C and 0.1-0.4 units, respectively, depending on year 

and RCP.  

Scleractinian coral cover in the Florida Keys in 2013 ranged from <1% to 41% across 43 

sites (Table S4). The twelve species from this study comprised 82 ± 16% (43), mean ± SD (n 

reefs), of the total scleractinian coral cover. The most abundant of these species were Siderastrea 

siderea (11-42% interquartile range (IQR)), Orbicella annularis complex (0-23% IQR), Porites 

astreoides (3-17% IQR), and Montastraea cavernosa (1-11% IQR). Most of the other species 
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contributed ≤10% relative coral cover at any given site. Applying laboratory-measurements to 

species composition results in a baseline Florida Keys coral calcification rate of 0.25 ± 0.09 g 

CaCO3 cm-2 y-1. This value is likely a lower estimate of coral calcification because it is 

constrained to the study species.  

Ensemble mean scleractinian calcification rates in year 2100 were 96 ± 2% and 84 ± 8% 

(ensemble mean ± SD, n = 43) of present day for RCP 2.6 and 4.0 respectively (Fig. 3a,b, Table 

S4). End-of-century ensemble scleractinian calcification rates were 69 ± 18% and 55 ± 24% of 

present-day rates for RCP 6.0 and RCP 8.5, respectively. The median standard uncertainty in 

model coefficients was ±16% and the median standard uncertainty of prediction was ±46%. 

Reefs with the largest projected declines in relative growth of 80 to 90% in RCP 8.5 (Fig. 3d) 

predominately consisted of O. annularis complex, P. astreoides, and M. cavernosa. These reefs 

included Eastern Sambo (shallow), Looe Key (shallow), Jaap, Black Coral Rock, Grecian Rocks, 

and Wonderland, where benthic coral cover is 5-40%. Reefs with higher relative proportions of 

S. siderea had projected calcification rates that were relatively unchanged across all emissions 

scenarios. These relatively unaffected sites include the patch reefs Dustan Rocks, Rawa, Thor, 

and West Turtle Shoal, as well as the deeper Molasses and Sombrero reefs (Fig. S6). 
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Fig. 3. Projected coral growth of Florida Keys reefs relative to the baseline year (2006) 
under four Representative Concentration Pathway (RCP) CO2 emission scenarios. 
Projections were based on mixed effects models of experimentally-measured calcification, 
annual average temperature and aragonite saturation state (Ωarag) from ensemble climate 
model data, and species composition data for 43 sites across the Florida Keys. The blue 
shaded region represents the projection for all reefs using uniform additive linear 
sensitivities to temperature and Ωarag. The sensitivity coefficients are -24% °C-1 for 
temperatures greater than the thermal optimum (mean response of Al-Horani et al. (2005), 
Carricart-Ganivet et al. (2012), Clausen and  Roth (1975), Coles and  Jokiel (1978), Houck 
et al. (1977), Marshall and  Clode (2004), Reynaud-Vaganay et al. (1999)) and 10% to 25% 
Ω -1arag  (Chan &  Connolly, 2013). 

DISCUSSION 

Growth responses to elevated temperature and Ωarag varied among species (Fig. 1) with 

reef-builders such as O. faveolata, M. cavernosa, P. clivosa, A. agaricites, D. stokesii, and P. 

astreoides calcifying at decreased rates under treatment conditions. Two species, S. radians and 

S. hyades, had calcification rates that increased with increasing temperature but decreased with 



Growth responses of Caribbean coral species 

17 
 

decreasing Ωarag. In contrast, S.siderea, A. cervicornis, P. strigosa, and P. divaricata did not 

show detectable responses to either temperature or Ωarag. The varied responses of these twelve 

species under the same experimental conditions suggest calcification is not solely an abiotic 

function of ambient temperature and chemical conditions.  

Of the twelve study species, only the calcification rates of A. cervicornis and S. siderea 

have been tested in similar laboratory settings (i.e. including feeding) under climate change 

scenarios (increased temperature and pCO2) (Table 2). Fed A. cervicornis corals maintained 

calcification under elevated pCO2 (Towle et al., 2015). Although this study corroborates those 

prior results, A. cervicornis experienced increased mortality at elevated temperatures. Due to the 

protected status of this species, colonies were obtained from a sheltered coral nursery 

(Schopmeyer et al., 2012) and therefore may be less thermally robust than conspecifics from 

other sites. Unlike this study, Siderastrea siderea corals exhibited mixed, though not 

incompatible, responses to elevated temperature and pCO2 in two experiments (Castillo et al., 

2014, Horvath et al., 2016). The corals from those studies were collected from the same location 

and the experiments were conducted under similar conditions but different treatment levels. 

Other laboratory experiments on coral growth under elevated pCO2 but constant temperature 

have documented null (Bedwell-Ivers et al., 2016) to negative (Enochs et al., 2014, Renegar &  

Riegl, 2005) pCO2 respones for A. cervicornis, negative responses for P. divaricata (Bedwell-

Ivers et al., 2016), and negative responses for P. astreoides juveniles (Albright &  Langdon, 

2011, Albright et al., 2008, de Putron et al., 2011). The present study measured no growth for O. 

faveolata in the intermediate 2.5 Ωarag, 30°C treatment, which may indicate an enzymatic 

“deadzone” for this species (Wooldridge, 2008).   
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This study attempted to replicate general Florida Keys reef conditions at 10 m depth, but 

this approach carries inherent tradeoffs. Coral species do not occupy the same niche and 

therefore the control treatment could be less optimal for some species than others. This appears 

to be the case for S. radians and S. hyades, which were mostly collected from Florida Bay where 

annual temperature maximums are regularly ≥2°C higher than the Florida Reef Tract (Okazaki et 

al., 2013). These species exhibited positive responses to temperature from 27-30°C. Beyond this 

range, calcification would eventually decrease as temperatures near these corals’ upper thermal 

limits. These species also appeared less sensitive to increased pCO2 in the laboratory setting than 

in the field (Table 2). 

 Simultaneously testing multiple species in a mixed assemblage has numerous advantages 

in comparison to meta-analyses, which are challenged to combine studies that differ in 

seasonality, duration, conditions, and methods. The mixed assemblage can be considered 

representative of actual reef environments. A multispecies approach is valuable for reducing 

potential publication bias (Møller &  Jennions, 2001) from not reporting species with null 

responses (the “file drawer effect”) because it facilitates comparisons among species. Despite the 

robust evidence showing decreasing calcification under elevated pCO2, prior meta-analyses have 

found evidence for publication bias in ocean acidification research (Chan &  Connolly, 2013, 

Kroeker et al., 2010).  

The growth responses from these common but understudied Caribbean coral species can 

be used to refine estimates of reef CaCO3 precipitation based on species abundance (Perry et al., 

2012) and to model changes in coral calcification of reefs over time. With respect to the latter, 

emissions scenarios and community composition determine the trajectories of scleractinian 

calcification. These trajectories were relatively stable under the optimistic RCP 2.6 and RCP 4.5 
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scenarios with <20% declines relative to present day (Fig. 3a,b). Under more realistic and 

extreme emissions scenarios of RCP 6 and RCP 8.5 where temperature increases by 1.5-3°C and 

Ωarag decreases by 1-1.3 units, more pronounced differences in reef trajectories are a result of 

species composition (Fig. 3c,d). The most abundant corals in terms of benthic cover were M. 

cavernosa, O. faveolata, P. astreoides, and S. siderea. Consequently, their calcification rates and 

responses to treatments were the most influential on the projections (Table S4). Of these four 

species, calcification of S. siderea was unaffected by the temperature and pCO2 levels tested 

here. Reefs with relative scleractinian cover consisting of >40% S. siderea generally were the 

most stable. These reefs tended to be patch reefs or deeper (10-20 m) offshore reefs (Fig. S6). 

Siderastrea siderea is already noted for its tolerance to extreme temperatures (Lirman et al., 

2011) and high relative abundance on the Florida Reef Tract (Lirman &  Fong, 2007).  

In comparison, uniform scleractinian sensitivity coefficients for temperature and Ωarag 

yield end-of-century calcification of 16% to -3% (net dissolution) relative to present-day under 

RCP 8.5 (blue shaded region in Fig. 3). These projections are based on additive, linear 

scleractinian calcification changes of 10 to 25% Ω -1arag  (Chan &  Connolly, 2013) and a mean -

24% °C-1 for temperatures above the thermal optimum (Al-Horani et al., 2005, Carricart-Ganivet 

et al., 2012, Clausen &  Roth, 1975, Coles &  Jokiel, 1978, Houck et al., 1977, Marshall &  

Clode, 2004, Reynaud-Vaganay et al., 1999).  These declines based on uniform constants are 

steeper and more homogenous than the declines of 0% to 90% based on species-specific 

responses (Fig. 3d; Table S1). These results clearly show the importance of community 

composition in determining reef-wide calcification responses to climate change.  However, in the 

absence of data on species sensitivities and reef composition, uniform assumptions/constants are 
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still valuable for predicting aggregate, regional calcification trajectories, especially if they are 

based on the dominant coral species. 

Several caveats must be considered with the projections. While calcification responses to 

elevated temperature and pCO2 were mostly negative, variability among colonies, communities, 

and climate models all contribute uncertainty to predictions at a given reef. Therefore, efforts to 

measure baseline calcification rates and long-term monitoring of colonies at multiple sites are 

important (Kuffner et al., 2013). This experiment may also underestimate compensatory 

mechanisms that might allow corals to calcify at rates faster than measured here due to long-term 

acclimation or adaptation to these conditions over several decades (Wall et al., 2016). Only 

twelve of the ~70 coral species in the Caribbean were tested in this experiment, and calcification 

responses of the remaining species could influence the projected outcomes. Projections are also 

based only on scleractinian corals, which represent <8% benthic cover in the Florida Keys 

(Ruzicka et al., 2013). They do not consider non-scleractinian CaCO3 precipitation and 

dissolution processes which may contribute significantly to reef CaCO3 budgets (Perry et al., 

2014).  

The projections are likely conservative because they do not account for processes that are 

expected to reduce coral cover. Increased bleaching and mortality with increasing temperatures 

(Hoegh-Guldberg, 1999) will severely cripple or halt calcification (van Hooidonk et al., 2014). 

To illustrate the importance of high-temperature stress, simulated coral cover in Hawaii over the 

next century was stable or increased when bleaching and mortality effects were ignored (Hoeke 

et al., 2011). The adverse effects of increased temperature and pCO2 on reproduction and 

recruitment (Albright, 2011, Anlauf et al., 2011, Chua et al., 2013, Hendriks et al., 2010, 

Kroeker et al., 2010) are expected to further reduce coral cover but they have not been well-
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quantified at the community-scale. Finally, actual CO2 emissions have consistently increased 

faster than the IPCC’s most extreme scenarios (Peters et al., 2013), and therefore future changes 

in temperature and Ωarag may be greater than predicted. Including all of these processes would 

likely result in more depressed calcification, but the focus of this study was calcification at sub-

lethal temperatures. 

Despite these caveats and conservative assumptions, the underlying pattern is lower, less 

stable growth from critical reef framework builders. In addition to bleaching, Caribbean reefs 

have already experienced large declines in scleractinian coral cover from reductions in 

herbivory, nutrient pollution, and disease (Aronson &  Precht, 2001, Gardner et al., 2003, 

Kuffner &  Toth, 2016). Current levels of coral cover are already associated with static reef 

growth or dissolution (Perry et al., 2013). Coupled with the prospect of more frequent bleaching 

and reduced aragonite saturation state driven by increasing anthropogenic atmospheric CO2, 

reefs are likely to experience continued declines. The species-specific responses measured here 

indicate that forecasts must take into account community composition. In addition to limiting 

pollution and overfishing (Kennedy et al., 2013, Wooldridge &  Done, 2009), another local 

strategy for mitigating climate change is focusing management efforts on reefs with corals 

capable of resisting high temperatures and low Ωarag. However, this approach may amount to no 

more than a triage strategy for minimizing further losses. Alternatively, the growth projections 

under the different RCPs illustrate how reducing global CO2 emissions has the potential to 

benefit all reefs throughout the Florida Reef Tract. 
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1 Table 2. Elevated pCO2 experiments conducted on the study species. Methods include pCO2 bubbling (pCO2), chemical 
2 additions (HCl, HCl/NaOH + Na2CO3/NaHCO3), and natural variation (none). Methods of measuring calcification (G) include 
3 buoyant weighing (BW), x-ray analysis (x-ray), image analysis (image), alkalinity anomaly (AA), and computerized 
4 tomography (CT). Some parameters are not disclosed (ND) or not applicable (NA). Light is reported as net daily radiation 
5 assuming 12 h d-1 of light. Calcification responses have been simplified to pairwise comparisons of pCO2 treatments and 
6 extrapolated relative to a baseline, pre-industrial Ωarag of 4.6. Italicized calcification responses were not determined to be 
7 significant in the original study. 

species 
CO2 

treatment 
Calcification 

metric setting 
n 

corals 
n 

colonies Ωarag 
T 

(°C) S 

light 
(mol m-2 

d-1) nutrition 
recovery 

time 
rampin

time 
A. cervicornis pCO2 BW lab 20 ND 2.9-4.0 30 ND ND not fed1 5 d 0 d 
A. cervicornis pCO2 BW lab 64 4 2.5-3.9 28 32 4.0-15.6 ND 7 d 9 d 
A. cervicornis pCO2 BW lab 192 ND 1.2-3.5 25 36 NS ND ND 0 d 

A. cervicornis pCO2 BW lab 80 8 2.2-4.1 26-30 33 5.8 
fed & not 

fed 4 weeks 0 d 
O. faveolata none x-ray field 7 7 4-4.5 ND ND NS in situ NA NA 
P. astreoides pCO2 image lab 102 102 2.3-3.9 28 36 ND not fed NA 0 d 
P. astreoides HCl image lab 35 35 2.2-3.2 25 35 <0.4 not fed NA 0 d 

P. astreoides 
HCl/NaOH 
+ Na2CO3 BW; AA lab 80 80 2.1-3.9 28-30 35 17-22 not fed1 24 d 0 d 

P. astreoides none CT field 14 14 0.8-4.2 28 34 ND in situ NA NA 
P. astreoides HCl; pCO2 DW lab ND ND 0.1-4.2 29 37-38 2.6 not fed NA NA 

P. astreoides none AA; x-ray field 9 9 2.8-3.5 19-28 36-37 7.4-55.5 in situ 6 mo 0 d 
P. divaricata pCO2 BW lab 20 ND 2.9-4 30 ND ND not fed1 5 d 0 d 

P. strigosa none AA; x-ray field 9 9 2.8-3.5 19-28 36-37 7.4-55.5 in situ 6 mo 0 d 

S. radians 
HCl + 

NaHCO3 AA field 10 10 1.1-5.7 20-31 32-47 3.5-50.0 in situ NA NA 

g 
duration 

linear ΔG 
% Ω-1 

(baseline 
Ω = 4.6) Reference 

4 weeks 13% Bedwell-Ivers et al. (2016) 

42 d 21-41% Enochs et al. (2014) 

4 weeks 22-29% Renegar and  Riegl (2005) 

8 weeks 0-17% Towle et al. (2015) 

60 years 0% Helmle et al. (2011) 
49 d 19% Albright and  Langdon (2011) 

28 d 36-39% Albright et al. (2008) 

35 d 19-29% Camp et al. (2016) 

ND 15% Crook et al. (2013) 

2 weeks 14-20% de Putron et al. (2011) 

1.5 h; 18 
months 63% Venti et al. (2014) 

4 weeks 21% Bedwell-Ivers et al. (2016) 

1.5 h; 18 
months 63% Venti et al. (2014) 

1.5 h 45% Okazaki et al. (2013) 
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S. siderea pCO2 BW lab 216 18 1.1-4.0 28 35 10.8 fed 30 d 15 d 
S. siderea pCO2 BW lab 144 18 2.7-6.8 28-32 35 10.8 fed 30 d 14 d 

S. hyades 
HCl + 

NaHCO3 AA field 7 7 1.1-5.7 20-31 32-47 3.5-50.0 in situ NA NA 
A. cervicornis pCO2 BW lab 20 16 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
A. agaricites pCO2 BW lab 54 22 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
D. stokesii pCO2 BW lab 59 5 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
M. cavernosa pCO2 BW lab 145 9 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
O. faveolata pCO2 BW lab 130 17 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
P. astreoides pCO2 BW lab 152 10 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
P. divaricata pCO2 BW lab 115 71 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
P. clivosa pCO2 BW lab 43 6 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
P. strigosa pCO2 BW lab 42 9 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
S. radians pCO2 BW lab 146 44 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
S. siderea pCO2 BW lab 138 30 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 
S. hyades pCO2 BW lab 138 22 1.7-4.3 27-30 33 3.7 fed 4 weeks 10 d 

1Coral nutrition assumed from water changes. 2Data fit to parabolic response. 3Data fit to general additive model. 

 

95 d NA2  Castillo et al. (2014) 

60 d 10-43% Horvath et al. (2016) 

1.5 h 44% Okazaki et al. (2013) 

6 weeks 29% this study 
6 weeks 13-14% this study 
6 weeks 5-11% this study 
6 weeks 15-25% this study 
6 weeks NA3 this study 
6 weeks 28% this study 
6 weeks 12-19% this study 
6 weeks -12-11% this study 
6 weeks 19% this study 
6 weeks 9-12% this study 
6 weeks 3% this study 
6 weeks 6-9% this study 

8 

9 

 10 

 11 
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